Parallel Maximum Flow

Siyuan Chen, Xinyue Yang

15-418 Parallel Computer Architecture and Programming, Spring 2024

We parallelized two maximum flow algorithms (Edmonds-Karp and Dinic's)
under the shared address space model using OpenMP. We evaluated their
performance on GHC and PSC machines against different network types. We
demonstrated that
- across the two algorithms, the former is more parallelizable but overall
the latter is more performant; and
- within each algorithm, the top-down and bottom-up parallelism strategies
are more suitable for sparse and dense networks, respectively.

Background

Augmenting-path-based maximum flow algorithms:

while there is an augmenting path in the residual network:
push flow along that augmenting path

Edmonds-Karp and Dinic’s constructs the layer network to help identify such

augmenting paths.
% o000
0 1 2 3

Edmonds-Karp then pushes flow
through a single shortest
augmenting path.

Dinic’s instead pushes flow
through all shortest augmenting

paths iteratively.
d-1 d

We evaluated the performance of our sequential and parallel algorithms on
several different types of networks:
- random graphs
- dense graphs (cliques)
- sparse graphs (from Delaunay triangulations)
- grid graphs (fully connected networks)

We care about the following characteristics:
- average degree of a vertex
- typical “width” (frontier size)
- typical “depth” (augmenting path length)

Sparse graph

References

15-210 Lecture Notes, Fall 2022, Parallel Graph Algorithms
Delaunay Graphs. 10th DIMACS Implementation Challenge
Delaunay Triangulation, Wikipedia

el S

Parallelism strategies

Push flow is inherently sequential, so we parallelize the build layers step
(essentially extending the frontier in breadth-first search).
- The top-down strategy parallelizes across the current frontier and
concurrently constructs the next frontier.
- tried coarse- and fine-grained locking; settled with atomic CAS
- The bottom-up strategy parallelizes across the vertices and determines
individually whether it belongs to the next frontier.
- requires no explicit synchronization; experimented with scheduling

GHC results

Dense graphs afford better parallelism for the bottom-up strategy, whereas
top-down has less overhead and artifactual computation, and is more

suitable for sparse graphs.

Runtime on 8-core GHC Machines

B topdown @ hottomup

Runtime on 8-core GHC Machines

B topdown [hottomup
4000 12500

10000
3000

7500

2000
5000

Runtime (ms)
Runtime (ms)

1000
2500

Edmonds-Karp Dinic's

Edmonds-Karp Dinic's

Dense graph performance Sparse graph performance

Problem size sensitivity

For Edmonds-Karp on dense graphs, speedup for 8 cores plateaus as number
of vertices increase past a threshold. This illustrates that cache effects impact

the performance of both parallelism strategies.

== top down == hottom up
6
4 //X
2

200 400 600 800

Speedup

1000 1200

Number of Vertices

15-451/651: Network Flow I, lecture notes, School of Computer Science 15-451, Carnegie Mellon University, Fall 2023.

PSC results

For Edmonds-Karp on dense graphs, as the number of cores increase, the
top-down approach achieves limited speedup due to poor utilization of the
parallel threads, whereas bottom-up proves to be more scalable, achieving a
30x speedup at 128 cores.

Edmonds-Karp Runtime vs Number of Threads

B topdown B bottomup

30000

20000
10000
0

1 2 4 8 16 32 64 128

Number of Threads

Runtime (ms)

Dinic's Speedup vs Number of Threads

= top down == bottom up

Edmonds-Karp Speedup vs Number of Threads

== t0op down == bottom up

1.5
20

0.5

Speedup

0 0.0
25 50 75 100 125 25 50 75 100 125

Number of Threads Number of Threads

We attribute the theoretical-practical speedup gap to the following factors:
- Amdahl’s law: the inherent sequential nature of push flow limits speedup
for Edmonds-Karp (to a lesser extent) and Dinic’s (to a greater extent);
- poor utilization (top-down): small frontier size hinders parallelism
- artifactual computation (bottom-up): sequentially inefficient computation
overshadows parallelism benefits
- cache effects for larger networks

... and to a lesser extent:
memory contention (top-down): occasional locking conflicts
abstraction overhead due to OpenMP

