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We parallelized two maximum flow algorithms (Edmonds-Karp and Dinic's) 
under the shared address space model using OpenMP. We evaluated their 
performance on GHC and PSC machines against different network types. We 
demonstrated that
- across the two algorithms, the former is more parallelizable but overall 

the latter is more performant; and
- within each algorithm, the top-down and bottom-up parallelism strategies 

are more suitable for sparse and dense networks, respectively.

Summary

Dense graphs afford better parallelism for the bottom-up strategy, whereas 
top-down has less overhead and artifactual computation, and is more 
suitable for sparse graphs.

GHC results
Augmenting-path-based maximum flow algorithms:
```
while there is an augmenting path in the residual network:

push flow along that augmenting path
```
Edmonds-Karp and Dinic’s constructs the layer network to help identify such 
augmenting paths.

Edmonds-Karp then pushes flow
through a single shortest
augmenting path.

Dinic’s instead pushes flow
through all shortest augmenting
paths iteratively.

Background

For Edmonds-Karp on dense graphs, as the number of cores increase, the 
top-down approach achieves limited speedup due to poor utilization of the 
parallel threads, whereas bottom-up proves to be more scalable, achieving a 
30x speedup at 128 cores.

PSC results

We evaluated the performance of our sequential and parallel algorithms on 
several different types of networks:
- random graphs
- dense graphs (cliques)
- sparse graphs (from Delaunay triangulations)
- grid graphs (fully connected networks)

We care about the following characteristics:
- average degree of a vertex
- typical “width” (frontier size)
- typical “depth” (augmenting path length)

Networks

We attribute the theoretical-practical speedup gap to the following factors:
- Amdahl’s law: the inherent sequential nature of push flow limits speedup 

for Edmonds-Karp (to a lesser extent) and Dinic’s (to a greater extent);
- poor utilization (top-down): small frontier size hinders parallelism
- artifactual computation (bottom-up): sequentially inefficient computation 

overshadows parallelism benefits
- cache effects for larger networks

… and to a lesser extent:
- memory contention (top-down): occasional locking conflicts
- abstraction overhead due to OpenMP

Analysis

Dense graph performance Sparse graph performance

For Edmonds-Karp on dense graphs, speedup for 8 cores plateaus as number 
of vertices increase past a threshold. This illustrates that cache effects impact 
the performance of both parallelism strategies.

Problem size sensitivity

Push flow is inherently sequential, so we parallelize the build layers step 
(essentially extending the frontier in breadth-first search).
- The top-down strategy parallelizes across the current frontier and 

concurrently constructs the next frontier.
- tried coarse- and fine-grained locking; settled with atomic CAS

- The bottom-up strategy parallelizes across the vertices and determines 
individually whether it belongs to the next frontier.
- requires no explicit synchronization; experimented with scheduling

Parallelism strategies

Sparse graph


